Recent Publications Recent Conferences Recent Presentations
Biophysics Elementary Particles Foundations of Physics
Mathematical Physics Theory of Relativity 

Complete List Symmetric Functions Finite Difference Linear Potential Rotation Group


The Dual Incursive System of the Discrete Harmonic Oscillator

Adel F. Antippa and Daniel M. Dubois
Computing Anticipatory Systems : CASYS'05 - Seventh International Conference
Daniel M. Dubois, Ed.
American Institute of Physics Conference Proceedings
AIP CP 839, pp. 11 - 64 (2006)

Abstract
This paper deals with the dual incursive system of the discrete harmonic oscillator, in the framework of discrete physics. Its basic premisses are that nature computes incursively, and that this is a consequence of the principle of maximum efficiency. The incursive system is based on two parallel algorithms depending on the order in which the computations are processed. Its incursivity, operationallity, and duality are discussed. We study the system conceptually, analytically, numerically and graphically. We give a number of different formulations of the equations of motion, study the closed form solutions, shifted natural frequency of oscillation. We find the system to be operationally efficient, orbitally stable in phase space, and to possess constants of the motion having the dimensions of energy.



Liste complète Fonctions Symétriques Différences finis Potentiel linéaire Groupe des rotations

Publications Récentes Conférences Récentes Présentations Récentes
Biophysique Particules élémentaires Fondements conceptuels
Physique mathématique Théorie de la relativité