Recent Publications Recent Conferences Recent Presentations
Biophysics Elementary Particles Foundations of Physics
Mathematical Physics Theory of Relativity 

Complete List Symmetric Functions Finite Difference Linear Potential Rotation Group

Recursive Formulation of the Relativistic Law of Superposition of Multiple Collinear Velocities

Adel F. Antippa
Journal of Difference Equations and Applications
vol. 13, no. 7 (2007)

We study the recursive formulation of the law of superposition of multiple collinear velocities. We start with the non-linear equation, transform it into two linear coupled difference equations with variable cofficients, and then decouple these latter equations. The coupled difference equations are solved by three different, but interrelated, methods: (i) via the graph theoretic discrete path approach, (ii) by using the general closed form solution of two coupled first order difference equations with variable coefficients, and (iii) in terms of the symmetric functions via the pochhammers of 2 x 2 non-autonomous matrices. The solutions of the decoupled equations are factorial polynomials.

Liste complète Fonctions Symétriques Différences finis Potentiel linéaire Groupe des rotations

Publications Récentes Conférences Récentes Présentations Récentes
Biophysique Particules élémentaires Fondements conceptuels
Physique mathématique Théorie de la relativité